El Mundo de la Física

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

La ley de la gravedad... «Todo lo que sube tiene que bajar»

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

Electro Robotica

Go to Blogger edit html and find these sentences.Now replace these sentences with your own descriptions.

sábado, 28 de noviembre de 2015

11°.- Presentación de Experimentos, fotos y videos
















10°.- Experimentos de Fisica

Globo levanta el vaso 





Explicación de Experimento  Globo levanta el vaso 

  • Los aerodeslizadores expulsan aire a mucha potencia bajo su superficie, creando una especie de colchón que les permite moverse sobre muchos terrenos horizontales, incluso sobre agua o nieve. El vehículo no está en contacto directo con la superficie, sino que se mueve sobre ella mediante el aire intermedio.
     

______________________________________________________

Aerodeslizador






Explicación de Experimento de Aerodeslizador


Si dejamos el CD sobre una superficie lisa con una pequeña inclinación vemos que permanece en reposo. Las fuerzas de rozamiento entre el CD y la superficie impiden que el CD se mueva. Si damos un ligero golpe al CD se detiene tras recorrer unos centímetros. Al desinflarse el globo se forma una cámara de aire bajo el CD que reduce el rozamiento por fricción y permite el movimiento. 




______________________________________________________

Experimento de presión del aire



Explicación experimento de Presión del Aire

En la botella sin agujero el globo no se puede inflar porque la botella ya está llena de aire y no es posible añadir más, nuestros pulmones no pueden luchar contra la presión del aire del interior. Sin embargo, si la botella tiene un agujero, el aire que estaba dentro puede escapar al exterior dejando sitio libre para que se infle el globo. Pon la mano cerca del agujero de la botella sentirás el flujo del aire que se va.

Cuando tapas el agujero, la presión del aire que está dentro de la botella es igual a la presión del aire en el exterior (la presión atmosférica). Pero esta situación no dura mucho porque en ese momento también ocurre otra cosa: el globo, al ser elástico, tiende a recuperar su forma y se encoge ligeramente. El aire atrapado en la botella tiene más sitio que ocupar. Por la ley de Boyle-Mariotte sabemos que, a la misma temperatura, si el volumen ocupado por un gas aumenta, su presión disminuye. Entonces, ahora la presión en el interior de la botella es menor que la presión atmosférica, por lo que el aire de dentro no empuja al globo tan fuertemente como el aire de fuera y de esta forma el globo se mantiene inflado. Si ahora destapas el agujero, el aire entrará en la botella aumentando la presión y empujará al globo que se colapsará y dejará salir el aire o el agua que tenga dentro.




miércoles, 25 de noviembre de 2015

9°.- Lentes, Espejos y Prismas




 En (a) lente plano-cóncava         (b) lente plano-convexa, 


               (c) lente bicóncava y              (d)  lente biconvexa.

Lente convexa: 


Una lente convexa es más gruesa en el centro que en los extremos. La luz que atraviesa una lente convexa se desvía hacia dentro (converge). Esto hace que se forme una imagen del objeto en una pantalla situada al otro lado de la lente. La imagen está enfocada si la pantalla se coloca a una distancia determinada, que depende de la distancia del objeto y del foco de la lente. La lente del ojo humano es convexa, y además puede cambiar de forma para enfocar objetos a distintas distancias. La lente se hace más gruesa al mirar objetos cercanos y más delgada al mirar objetos lejanos. A veces, los músculos del ojo no pueden enfocar la luz sobre la retina, la pantalla del globo ocular. Si la imagen de los objetos cercanos se forma detrás de la retina, se dice que existe hipermetropía.

Lente cóncava.
Las lentes cóncavas están curvadas hacia dentro. La luz que atraviesa una lente cóncava se desvía hacia fuera (diverge). A diferencia de las lentes convexas, que producen imágenes reales, las cóncavas sólo producen imágenes virtuales, es decir, imágenes de las que parecen proceder los rayos de luz. En este caso es una imagen más pequeña situada delante del objeto (el trébol). En las gafas o anteojos para miopes, las lentes cóncavas hacen que los ojos formen una imagen nítida en la retina y no delante de ella.



Lupa:Una lupa es una lente convexa grande empleada para examinar objetos pequeños. La lente desvía la luz incidente de modo que se forma una imagen virtual ampliada del objeto (en este caso un hongo) por detrás del mismo. La imagen se llama virtual porque los rayos que parecen venir de ella no pasan realmente por ella. Una imagen virtual no se puede proyectar en una pantalla.



Prismas:

Cuando la luz atraviesa un prisma —un objeto transparente con superficies planas y pulidas no paralelas—, el rayo de salida ya no es paralelo al rayo incidente. Como el índice de refracción de una sustancia varía según la longitud de onda, un prisma puede separar las diferentes longitudes de onda contenidas en un haz incidente y formar un espectro. En la figura 5, el ángulo CBD entre la trayectoria del rayo incidente y la trayectoria del rayo emergente es el ángulo de desviación. Puede demostrarse que cuando el ángulo de incidencia es igual al ángulo formado por el rayo emergente, la desviación es mínima. El índice de refracción de un prisma puede calcularse midiendo el ángulo de desviación mínima y el ángulo que forman las caras del prisma.







Reflexión interna total



La reflexión interna total es un fenómeno que sólo ocurre cuando la luz pasa de un medio con mayor índice de refracción a uno con menor índice de refracción. Se produce cuando un rayo de luz incide con un ángulo mayor al ángulo crítico.




Difracción e interferencia[editar]

La Difracción y la interferencia son fenómenos inseparables, al punto que no es siempre sencillo distinguirlos. Esto es debido a que la difracción es una forma particular de interferencia. Citando a Richard Feynman: «No-one has ever been able to define the difference between interference and diffraction satisfactorily. It is just a question of usage, and there is no specific, important physical difference between them.» (Nadie ha sido capaz de definir la diferencia entre interferencia y difracción de forma satisfactoria. Es solo una cuestión de uso, sin diferencias físicas importantes).
Como consecuencia, cuando en la física, se necesita estudiar formas de interferencia específicas, es necesario poder distinguir los efectos provenientes de las mismas a los efectos provenientes de la difracción.
La interferencia se produce cuando la longitud de onda es mayor que las dimensiones del objeto, por tanto, los efectos de la difracción disminuyen hasta hacerse indetectables a medida que el tamaño del objeto aumenta comparado con la longitud de onda.





Polarización de la luz:

La polarización  se define como el desplazamiento instantáneo de las partículas que oscilan. Un ejemplo muy practico se da cuando se propagan ondas atreves de una cuerda, al enviar pulsos perpendiculares las partículas vibran de arriba hacia abajo y la transmisión es perpendicular a la dirección del movimiento, formándose así el plano de vibración.
Si la cuerda atraviesa dos rendijas una perpendicular y otra horizontal es posible que el plano de vibración de la cuerda no presente dificultad al pasar por la primera rendija pero no podrá hacerlo por la segunda, como se observa  en la figura 1.
Este efecto observado evidencia que luz presenta un comportamiento similar al de las ondas transversales, ya que si fuese su comportamiento igual al de una onda longitudinal. No se produciría variación alguna en la oscilación de la onda.


8°.- Principio de Fermat


Principio de Fermat


El enunciado original del principio de Fermat decía "el camino entre dos puntos dados que recorre un rayo de luz es tal que para ese camino el tiempo que tarda la luz en recorrerlo es mínimo".


En términos más modernos, dado que los rayos de luz son sólo un modelo erróneo (aunque útil en algunos casos) de la óptica, el principio de Fermat se expresaría diciendo que "la luz, al ir de un punto a otro, sigue una trayectoria tal que el camino óptico recorrido es mínimo".


A pesar de esta corrección el principio de Fermat sigue siendo erróneo, dado que a veces la luz sigue un camino óptico máximo. Por tanto el principio se reformula a partir de la teoría variacional diciendo que "el camino óptico recorrido por la luz para ir de un punto a otro es tal que el camino óptico recorrido es estacionario respecto a las variaciones de los caminos posibles".

1.2 Formulación matemática


Matemáticamente se expresa este principio como sigue: el tiempo que tarda la luz en recorrer una distancia en un medio dado es , donde es la velocidad de la luz en ese medio (suponemos que la velocidad es constante en todo el medio, sin importar la dirección de desplazamiento). Definiendo el índice de refracción como entonces


Si ahora tomamos un medio en el que el índice de refracción depende de la posición entonces podemos estimar que una distancia diferencial se recorre en un tiempo , siendo el tiempo total en recorrer el camino entre un punto y otro la cantidad










Con lo cual el principio de fermat radica en encontrar los valores extremos de la función:










Resultado de imagen para principio de fermat

7°.- Principio de Huygens

Alrededor de 1860 el físico danés Huygens propuso un mecanismo simple para trazar la propagación de ondas. Su construcción es aplicable a onda mecánicas en un medio material.
    Un frente de onda es una superficie que pasa por todos los puntos del medio alcanzados por el movimiento ondulatorio en el mismo instante. La perturbación en todos esos puntos tiene la misma fase. Podemos trazar una serie de líneas perpendiculares a los sucesivos frentes de onda. Estas líneas se denominan rayos y corresponden a las líneas de propagación de la onda. La relación entre rayos y frente de ondas es similar a la de líneas de fuerza y superficies equipotenciales. El tiempo que separa puntos correspondientes de dos superficies de onda es el mismo para todos los pares de puntos correspondientes (teorema de Malus).
    Huygens visualizó un método para pasar de un frente de onda a otro. Cuando el movimiento ondulatorio alcanza los puntos que componen un frente de onda, cada partícula del frente se convierte en una fuente secundaria de ondas, que emite ondas secundarias (indicadas por semicircunferencias) que alcanzan la próxima capa de partículas del medio. Entonces estas partículas se ponen en movimiento, formando el subsiguiente frente de onda con la envolvente de estas semicircunferencias. El proceso se repite, resultando la propagación de la onda a través del medio. Esta representación de la propagación es muy razonable cuando la onda resulta de las vibraciones mecánicas de las partículas del medio, es decir una onda elástica pero no tendría significado físico en las ondas electromagnéticas donde no hay partículas que vibren.



16. Reflexión, refracción y Principio de Huygens

A partir del principio de Huygens puede demostrarse la ley de la refracción
Supongamos que un frente de onda avanza hacia la superficie refractante I1I2 que separa dos medios en los cuales las velocidades de la luz son v y v´. Si consideramos I1 como emisor, en el tiempo Dt en que la perturbación llega de A a I2, la perturbación originada en I1habrá alcanzado la esfera de radio r´= v´Dt. En el mismo tiempo la perturbación correspondiente llega a todos los puntos de la envolvente BI2, y tomando los rayos normales a los frentes de onda, de la figura se deduce que:  

Þ
n1 sen ai  
=
n2 sen ar

Lo cual está de acuerdo no solo a la experiencia no sólo en cuanto a direcciones de propagación sino también en que en el medio de mayor índice de refracción la velocidad es menor contrariamente a lo que suponían Descartes y Newton.
            La teoría ondulatoria no pudo progresar en aquella época debido a la gran autoridad de Newton que la combatía arguyendo que dicha teoría no podía explicar la propagación rectilínea.


6°.- Que es la Óptica

La óptica física es la rama de la fisica que toma la luz como una onda y explica algunos fenómenos que no se podrían explicar tomando la luz como un rayo. Estos fenómenos son:
  • Difracción: Es la capacidad de las ondas para cambiar la dirección alrededor de obstáculos en su trayectoria, esto se debe a la propiedad que tienen las ondas de generar nuevos frentes de onda.
  • Polarización: Es la propiedad por la cual uno o más de los múltiples planos en que vibran las ondas de luz se filtra impidiendo su paso. Esto produce efectos como eliminación de brillos.

5°.- Segunda Ley de Newton

La Segunda Ley de Newton establece lo siguiente:
La aceleración de un objeto es directamente proporcional a la fuerza neta que actúa sobre él e inversamente proporcional a su masa.
De esta forma podemos relacionar la fuerza y la masa de un objeto con el siguiente enunciado:




Una buena explicación para misma es que
establece que siempre que un cuerpo ejerce una fuerza sobre un segundo cuerpo, el segundo cuerpo ejerce una fuerza sobre el primero cuya magnitud es igual, pero en dirección contraria a la primera.  También podemos decir que la segunda ley de Newton responde la pregunta de lo que le sucede a un objeto que tiene una fuerza resultante diferente de cero actuando sobre el.




Video de  segunda ley